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ABSTRACT
Alzheimer’s disease (AD) constitutes a serious societal healthcare issue as the proportion of the
aging population increases. There are ongoing discussions about the necessity of screening the
population for AD. We investigate optimal population screening policies for AD using Markov
Decision Processes (MDPs). The objective function combines quality-adjusted life years and costs.
The disease states are identified according to Clinical Dementia Rating (CDR) scores. The screening
test in the model is the Mini Mental State Examination (MMSE), a cognitive test that is widely
used in clinical practice. A numerical implementation of the MDP model is presented based on
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and existing literature. In the
baseline case, the optimal outcome is not to employ a population-wide screening program. We
conduct extensive sensitivity analyses on several model parameters. Our study reveals that the
optimal policy may be sensitive to changes in transition probability estimates. When we focus on
transitions that are related to treatment effectiveness, we find that implementing a population
screening policy becomes socially optimal when plans that lead to cognitive ability stabilization or
improvement become available.
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1. Introduction

According to the World Alzheimer Report 2015 delivered by
Alzheimer’s Disease International, currently there are over 46
million people suffering from dementia. This figure is
expected to double by year 2030 and more than triple by year
2050 (Prince, 2015). According to this report, the total cost of
dementia, including direct medical, social sector and informal
care costs, is estimated to be US $818 billion worldwide, and is
foreseen to reach a trillion dollars in the next two years.
Alzheimer’s disease (AD) is believed to be the most common
type of dementia, accounting for 50% to 75% of the total with
a greater proportion in the higher age ranges (Duthey, 2013).

AD has an insidious onset and its progression is charac-
terized by memory dysfunction and cognitive disturbances,
such as problems recalling familiar names and objects and/
or behavioral changes. Loss of short-term memory and
impaired visuospatial orientation are typical early symptoms
of the disease. As AD progresses, there is a general decline
of multiple cognitive functions related to daily activities.
Ultimately, patients become very dependent on caregivers.
The clinical diagnosis of AD is based on the patient’s med-
ical history and a neurological assessment, along with neuro-
psychiatric testing of the patient’s cognitive functions. To be
able to differentiate from other causes of dementia, neuroi-
maging techniques may be used. Technically, a definite

diagnosis of AD cannot be made until a neuropathological
exam of the brain is carried out after the patient’s death.

Clinical Dementia Rating (CDR) was developed as part of a
memory and aging project at Washington University in 1979.
It is a widely used instrument to diagnose and stage AD. CDR
involves an individual’s assessment in six domains (memory,
orientation, judgment and problem solving, community
affairs, home and hobbies and personal care) where informa-
tion is collected from the individual as well as an informant.
Scores in these dimensions are then combined to obtain a
score that indicates severity of dementia. A CDR score of 0
indicates no dementia, 0.5 is questionable dementia and 1, 2
and 3 are mild, moderate and severe dementia, respectively
(Morris, 1993). CDR is found to have high inter-evaluator val-
idity and is a trusted method of AD staging; however, it is not
appropriate as a brief screening tool due to the quantity and
complexity of information to be collected (Morris, 1997).

Several screening tests have been developed for screening
cognition in individuals with a likely cognitive decline. Among
these, Mini Mental State Examination (MMSE), developed by
Folstein et al. (1975), is the one that has widespread use in clin-
ical practice. MMSE is composed of 30 items, each correct
response of which is worth one point. Those individuals scor-
ing below a certain cut-off point are likely to be demented with
a certain sensitivity and specificity. In a review that studies
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validity and applicability of different screening tests, MMSE
and its variations are found to be most reliable along a number
of dimensions (Cullen et al., 2007). Another study that evalu-
ates the quality of a mapping of MMSE scores to CDR stages in
terms of accuracy concludes that it can be used as a reliable tool
to diagnose and stage dementia (Perneczky et al., 2006).

AD is not curable once cognitive decline begins. Despite
the definite progressive nature of AD, some studies have
reported episodes of cognitive improvement in patients
under drug therapy (AD2000 Collaborative Group, 2004;
Mangialasche et al., 2010; Neumann et al., 2001). There are
four registered drugs that are given to treat symptoms of AD.
These are the three acetylcholinesterase inhibitors (AChEIs)
donepezil, galantamine and rivastigmine, and the glutamate
inhibitor memantine. It has been established that AChEIs
have positive effects on cognition, behavior and activities of
daily living. According to the National Institute for Health
and Care Excellence (NICE), AChEIs are recommended for
patients with mild to moderate dementia (NICE et al., 2011).
There are several cost-effectiveness studies for drug treat-
ment. For example Touchon et al. (2014) showed that a com-
bination of memantine and one AChEI can significantly delay
institutionalization time and increase life quality. The reader
may refer to the reviews of Kaduszkiewicz et al. (2005) and
Kirby et al. (2006) for further details about the effectiveness
of AChEIs and memantine, respectively.

Screening tests aim to sort out individuals who probably
have a disease from those who probably do not (World Health
Organization, 2012). In general, screening tests may generate
false positives and false negatives with a certain likelihood. A
screening policy is expected to balance the trade-off between
the benefits of early intervention and risks of unnecessary
screening test applications and implications of false positives.
Currently, there are no population screening policies in any
country for AD, although its importance has been stated at
various occasions, such as in the Leon Thal Symposium series
(Khachaturian et al., 2010, 2011) and the National Alzheimer’s
Project Act (NAPA) in the United States (Khachaturian et al.,
2012). The government proposal in the UK for screening the
elderly population for dementia during their routine health
checks set off a discussion among health professionals who are
in favor and those who are against such a policy (Kmietowicz,
2012). In January 2015, the UK National Screening Committee
upheld its recommendation against screening everyone aged
65 and over for dementia. Their decision was mainly based on
poor accuracy of the suggested cognitive test and lack of a cure
(UK National Screening Committee, 2015). A survey-based
study conducted in 2009 in multiple European countries found
that a smaller proportion of physicians (42%) and payers (44%)
than members of the general public (81%) or caregivers (80%)
agreed that a routine screening for AD starting at age 65 would
be beneficial (Bond et al., 2010). Participants who were not in
favor of screening cited reasons such as the inaccuracy of avail-
able tests, high costs, absence of cure, negative impact on the
individual and late visibility of symptoms in AD.

There have been a number of studies that find AD screen-
ing cost-effective. Weimer and Sager (2009) used a Monte
Carlo cost-benefit simulation framework using parameter

estimates from the literature. Getsios et al. (2012) used a dis-
crete event simulation framework where some data were taken
from donepezil treatment research conducted in the UK.
Barnett et al. (2014) developed a cohort model with two dif-
ferent treatment scenarios depending on MMSE course over
time. These studies support the idea that screening for AD is
cost-effective for society as well as the individual. Dixon et al.
(2014) compared the results of a hypothetical one-time
screening program with a non-screening program on people
aged 75 or older in England and Wales and found that a
screening program could be cost-effective if treatments and
social care interventions were to be more effective. Finally, Yu
et al. (2015) conducted cost-effectiveness research on a
screening program in Korea and found cost-effectiveness to
be very sensitive to treatment effectiveness. None of these
studies sought an optimal screening policy for AD.

In this study, our goal is to investigate the viability of
employing a population-wide screening program for AD by
modeling the decision problem as a Markov Decision Process
(MDP). Markov models have been used widely to model AD
progression (Cohen and Neumann, 2008; Green, 2007; Green
et al., 2011). However, to the best of our knowledge, they have
not been used to investigate a population screening decision
for AD, although they have been utilized in addressing screen-
ing decisions in different health conditions. Pioneering studies
on screening date back to the 1990s (€Ozekici and Pliska, 1991;
Parmigiani, 1993). Screening models for several types of can-
cer, diabetes and infectious diseases have been built using
MDPs and partially observable MDPs. (Ayer et al., 2012;
Gillies et al., 2008; Harper and Jones, 2005; Kirkizlar et al.,
2010; Kurt et al., 2011; Maillart et al., 2008; Underwood et al.,
2012; Zhang et al., 2012). Our model is built so as to employ a
cognitive screening test and treat individuals who are identi-
fied in the process as cognitively deficient with an appropriate
drug therapy. We implement the model using data from the
literature. Data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study is used to estimate transition probabil-
ities based on a multistate Markov model. Our screening
model is a simple MDP that can be solved using standard tech-
niques. This allows us to conduct extensive sensitivity analyses
on the parameters of the model. Our studies direct us to focus
on the impact of improvements in treatment effectiveness on
the optimal policy and quantify expected cost and QALY gains
that become possible. As such, we obtain an indication as to at
which levels of treatment effectiveness a population-wide
screening action would be desirable, as well as a description of
the associated screening policy. The remainder of this article is
organized as follows. In Section 2 we provide a mathematical
description of our model. Section 3 contains our numerical
implementation as well as results of sensitivity analyses. A
summary of our findings with future research directions is
given in the last section.

2. The model

To find an optimal screening policy for a given population,
we develop a finite horizon discounted MDP where an opti-
mal action with respect to maximizing a predetermined
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objective function is determined in every period. The prob-
lem is modeled from the perspective of a policymaker whose
possible actions are to implement or not to implement a
screening action in a given period. Thus, the collection of
optimal actions across time constitutes a population-wide
optimal screening policy. In the model, t denotes the deci-
sion epochs or periods, t ¼ 0; 1; :::;T<1, and our cycle
time is one year.

S denotes the state space, S ¼ f0; 1; 2; 3; 4; 5; 6g where
st 2 S represents the state of an individual in period t. The
stages typically used in AD disease models, namely cogni-
tively normal, Mild Cognitive Impairment (MCI), mild,
moderate and severe stages, constitute the basis of our
model. We have two states for each of MCI and mild stages,
differentiating between treatment and no treatment options.
In moderate and severe stages, we do not make this distinc-
tion. This is mainly due to transition probability estimation
issues, because our data set contains few instances of
untreated patients in these disease stages. We pool these
stages where the disease clearly manifests itself and include
treatment costs when estimating our model data.

In our model, state 0 is the cognitively normal stage, cor-
responding to CDR score of 0. In this state, AD is not
detectable by a cognitive test. Our MCI states, 1 with treat-
ment and 2 without treatment, both correspond to a CDR
score of 0.5. Likewise, state 3 corresponds to mild AD stage
with treatment whereas state 4 is the no treatment mild
stage, both corresponding to a CDR score of 1. State 5 cor-
responds to moderate and severe stages of AD with CDR
score higher than 1, regardless of treatment. State 6 is the
absorbing state of death due to AD and all other causes.
These states have been defined with respect to the natural
course of the disease as presented in the literature. Although
several studies using Markov models have defined the states
with respect to mild, moderate and severe stages of AD
(L�opez-Bastida et al., 2009; Neumann et al., 2001), recent

literature has shown the existence of MCI to be a potential
early stage of AD. We include MCI as one of the states of
the model (Association et al., 2017; McKhann et al., 1984;
Sperling et al., 2011).

Figure 1 illustrates the model states where the dashed
arrows represent the instant state transitions that are
allowed in the multi-state Markov (MSM) model, which is
used to estimate transition probabilities. MSM models are
widely used to model disease progression (Jackson et al.,
2003). An MSM model describes how an individual moves
among a number of states in continuous time. This is trans-
lated into movement in the discrete state space by transition
intensities. An MSM model requires observing the state of
individuals at particular points in time from which a max-
imum likelihood transition intensity matrix is estimated.
MSM models may include covariates. The estimation of
transition probabilities is, in turn, conducted based on
intensity rates. More detailed information on MSM method-
ology is given in the Appendix. Despite the progressive
nature of the disease, our model allows some of the reverse
transitions because it has been reported that cognition may
improve temporarily during the course of the disease
(AD2000 Collaborative Group, 2004; Koepsell and Monsell,
2012; Mangialasche et al., 2010; Neumann et al., 2001).
Transitions to death state are possible from any state and
arrows are not drawn to avoid clutter. The yearly transition
matrices for the MDP model are then derived from the esti-
mated transition intensities. The transition probability
matrices are also given in Section 3.

When a screening action takes place, individuals identi-
fied as positive in states 0 and 2 move to state 1. An indi-
vidual in state 1 may stay there, move to state 0 since her
cognition improves, to 3, 4 and 5 because of a cognitive
decline, or to 2 due to treatment nonadherence.

We need the following additional notation for a full
mathematical description of the model:

Figure 1. The model framework.
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� at: Action chosen at period t; i.e., at 2 At ¼ fY;Ng
where Y represents the action to screen the patient using
MMSE test and N represents the action not to screen.

� pss0t ðaÞ: State transition probabilities. It is the probability
that the individual will be in state s0 2 S at decision
epoch tþ 1 given that he/she is in state s 2 S at decision
epoch t and action a is taken. For example, p21t ðNÞ repre-
sents the probability that the individual in state 2 at
period t will be in 1 in period tþ 1 when the chosen
action at t is N. The transition probability matrix in
period t when action a is taken is denoted as PtðaÞ.

� Rtðs; aÞ: Expected reward between epochs t and tþ 1
when the individual is in state s 2 S and action a is
taken. The reward is a function of an individual’s QALY
at that state and the associated costs of the state.

� VtðsÞ: Value function that gives the expected remaining
reward when the individual is in state s in period t.

� c: Discount factor, 0<c � 1.

To find the optimal solution, the following set of recur-
sive equations needs to be solved. These equations are
known as Bellman’s equations (Puterman, 1994).

VT sð Þ ¼ 0; 8s 2 S;

Vt sð Þ ¼ max

�
Rt s;Yð Þ þ

X6
i¼0

psit Yð ÞcVtþ1 ið Þ;

Rt s;Nð Þ þ
X6
i¼0

psit Nð ÞcVtþ1 ið Þ
�
; 8s 2 S; 8t<T

(1)

For a finite horizon model like ours, any solution to
Bellman’s equations is an optimal solution. Also, since the
state space and action set are finite, any policy that satisfies
Bellman’s equations is an optimal policy (Puterman, 1994).

3. A numerical implementation of the model

The time horizon we choose for our screening model is
between the ages 60 and 100; i.e., T¼ 40 where t¼ 0 corre-
sponds to age 60. For an implementation of the model, we
need to estimate transition probabilities, accuracy of the
screening test, and establish rewards and costs. We use a
combination of Quality Adjusted Life Years (QALYs) and
monetary costs as rewards. The QALY of a particular patient
is the equivalent time in full health that matches her one
year in her health state (Brazier, 2007). Cost and QALY fig-
ures are taken from the literature. We estimate transition
probabilities based on ADNI data. Detailed explanation for
each of the estimated parameters are presented below.

3.1. Transition probabilities

ADNI is a longitudinal study that has been collecting data on
clinical, imaging, genetic and biospecimen biomarkers through
the process of normal aging to MCI and to dementia. The main
objective of ADNI is currently stated as tracking the progression
of the disease using biomarkers. The initial phase of the ADNI
study, which is labeled as ADNI1, had the goal of creating

uniform standards for acquiring longitudinal, multi-site mag-
netic resonance imaging and positron emission tomography
data on patients with AD and MCI as well as a control group.
ADNI1 is a multi-center study in which about 800 subjects were
recruited over 50 different sites across the United States and
Canada. The key eligibility criteria were being between the ages
55 to 90 and having a study partner who is able to provide an
independent evaluation of functioning (Alzheimer’s Disease
Neuroimaging Initiative, 2006). The participants were followed
for a maximum duration of eight years between 2005 and 2014.
Each participant was asked to undergo follow-up exams at six
months. Medication information of participants was updated
annually. Some follow-ups may have missing values due to rea-
sons such as inaccessibility of the participant at that date or
unwillingness to participate. Observations may be truncated
by death.

There are 229 Normal participants, 398MCI patients and
192 AD patients in our ADNI1 data set whose ages, CDR scores,
MMSE scores and treatment information are available. The
transition probabilities among model states are estimated by
means of an MSM model. We used R’s MSM package (Jackson,
2011) to estimate the transition intensities where age was intro-
duced as a covariate. We generated two sets of transition proba-
bilities based on age, the first set covering ages 60 to 74 and the
second set covering ages 75 to 100. In the latest Alzheimer’s
Association report (2017), age is mentioned as being one of the
most important factors that have an impact on the prevalence
of the disease. Seventy-five is used as one of the cutoff values in
this report and also in Neumann et al. (2011).

The resulting probability transition matrices among our
states estimated from ADNI data are presented in Table 1.
PtðatÞ denotes the estimated probability of transitioning
from one state to another in one year, t being broken into
two intervals between 0 to 14 and 15 to 40 with the chosen
action at being either N for no screening or Y for screening.
With rows and columns of each matrix numbered in
increasing order of the states starting from state 0, the ijth

entry of a matrix in Table 1 corresponds to the transition
probability pijt ðaÞ where i is the outgoing state and j is the
incoming state. The ADNI observations are used to estimate
the transitions when the chosen action is not to screen. The
transition probabilities when the chosen action is to screen
is built on these estimates as follows. When at = Y, transi-
tions from states 1, 3, 4 and 5 will not change as these indi-
viduals are already diagnosed. Individuals in states 0 and 2
who are identified as cognitively deficient will be moved to
a treatment state 1. Therefore, the transitions from state 2 to
2 and from state 0 to 0 of PtðNÞ need to be reallocated in
accordance with the sensitivity (a) and specificity (b) of the
test employed. The computation of transition probabilities
when action is to screen can be summarized as follows:

p00t Yð Þ ¼ bp00t Nð Þ
p01t Yð Þ ¼ 1�bð Þp00t Nð Þ þ p01t Nð Þ
p21t Yð Þ ¼ p21t Nð Þ þ ap22t Nð Þ
p22t Yð Þ ¼ 1�að Þp22t Nð Þ
p0it Yð Þ ¼ p0it Nð Þ; for i ¼ 2; 3; 4; 5; 6:

p2it Yð Þ ¼ p2it Nð Þ; for i ¼ 0; 3; 4; 5; 6:
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The first equation reflects the fact that transitions from 0
to 0 happen when the test result is a true negative. The
second equation indicates that additional transitions from 0
to 1 may happen when the test result is a false positive. The
third equation is associated with the case when the test
result is a true positive in addition to the normal course of
transition from state 2 to state 1. Finally, the fourth equation
refers to the case when the test result is a false negative and
hence the individual remains in state 2.

We estimate a and b by maximizing the Youden Index,
which is equal to aþ b�1 (Youden, 1950) over ADNI data
where cognitively normal individuals are distinguished from
others using an MMSE cut-off score. This resulted in an
MMSE cut-off score of 27 (MMSE score � 28 for cogni-
tively normal) with a ¼ 0:71 and b ¼ 0:93.

3.2. Quality of life data

QALYs of this implementation are computed based on the
studies of Ready et al. (1999) and Neumann et al. (2001).
QALY values for different stages of the disease (1, 2, 3, 4, 5)
are 0.73, 0.73, 0.68, 0.63 and 0.52, respectively. The QALY
value of death is 0. To determine the QALY value of our state
5, we took the weighted average of QALY in moderate and
QALY in severe stages of Neumann et al. (1999). Neumann
et al. (1999) do not provide a QALY value for a cognitively
normal individual. We use 0.88 for this value, which is the
QALY value of the caregiver of a patient in nursing home care
(Neumann et al., 1999). Most of the time, the caregiver is the
spouse of the patient and is of around the same age, but pre-
sumably in a mentally healthy state. Without the burden of
home care, the caregiver’s QALY is a good approximation of
the QALY value of a participant in cognitively normal stage.

3.3. Cost data

Costs associated with different model states are taken from dif-
ferent research studies. The cost of being in state 0 is taken
from the work of Alemayehu and Warner (2004). They esti-
mated health care costs for an elderly patient at age 65 as
$10,245 in year 2000 dollars. For other states, we use Leon

et al.’s (1998) study as a basis. In this study, costs (including
treatment, formal and informal care) are given across a num-
ber of settings and for mild (including MCI patients), moder-
ate and severe stages of the disease. We associate the annual
cost of $13,068, $18,408 and $30,699 for our states 1, 3 and 5,
respectively, the last one being a weighted average of the mod-
erate and severe stage costs. For our states 2 and 4, which are
MCI without treatment and mild without treatment, we sub-
tract the annual cost of treatment, estimated as $1,825 in 2009
year dollars (Leon and Neumann, 1999) after all figures are
expressed in 2016US dollars. MMSE is a screening tool which
has no cost other than a regular physician consultation, so we
take cSc = 0. All costs used in the model implementation
expressed in 2016 dollars are presented in Table 2.

3.4. Rewards

Our rewards combine costs and QALY values using a cost-
effectiveness ratio (r). For all s 2 S n f6g and a 2 fY;Ng,
Rðs; aÞ ¼ r � QALYðsÞ�cðs; aÞ where cðs;NÞ ¼ cðsÞ for all s
and cðs;YÞ ¼ cðsÞ þ csc for all s. Because screening action is
valid for states 0 and 2, the rewards for states 1, 3, 4 and
5 are action independent, hence Rðs; aÞ ¼ RðsÞ ¼ r�
QALYðsÞ�cðsÞ. State 6 is assumed to have a zero reward.
We take r as $100,000 per QALY per year.

3.5. Results

3.5.1. Baseline results
In the baseline implementation, we use the parameters
described earlier and a discount factor c of 0.98. The opti-
mal policy turns out to be not to screen the population at
any time. We then conduct sensitivity analyses on a number

Table 1. Estimated transition probabilities.

PtðatÞ at ¼ N at ¼ Y

t<15 0:912 0:004 0:076 0:001 0:002 0 0:004
0:017 0:662 0:02 0:258 0:002 0:037 0:005
0:085 0:085 0:742 0:035 0:038 0:01 0:004
0:001 0:072 0:002 0:703 0:007 0:196 0:02
0:007 0:021 0:109 0:256 0:356 0:187 0:064
0 0:007 0 0:139 0:001 0:705 0:147
0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

0:848 0:068 0:076 0:001 0:002 0 0:004
0:017 0:662 0:02 0:258 0:002 0:037 0:005
0:085 0:612 0:215 0:035 0:038 0:01 0:004
0:001 0:072 0:002 0:703 0:007 0:196 0:02
0:007 0:021 0:109 0:256 0:356 0:187 0:064
0 0:007 0 0:139 0:001 0:705 0:147
0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

t � 15 0:891 0:008 0:086 0:001 0:004 0 0:01
0:003 0:7 0:013 0:22 0:003 0:042 0:019
0:077 0:13 0:671 0:029 0:058 0:01 0:025
0 0:078 0:002 0:632 0:011 0:257 0:02

0:008 0:022 0:13 0:148 0:505 0:168 0:02
0 0 0 0 0 0:872 0:128
0 0 0 0 0 0 1

7

0
BBBBBBBB@

1
CCCCCCCCA

0:829 0:07 0:086 0:001 0:004 0 0:01
0:003 0:7 0:013 0:22 0:003 0:042 0:019
0:077 0:606 0:195 0:029 0:058 0:01 0:025
0 0:078 0:002 0:632 0:011 0:257 0:02

0:008 0:022 0:13 0:148 0:505 0:168 0:02
0 0 0 0 0 0:872 0:128
0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

Table 2. Costs associated with states in 2016 dollars ($).

s cðsÞ
0 14,235
1 20,108
2 18,061
3 28,325
4 26,278
5 47,224
6 0
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of parameters used in the model. An analysis on the cost-
effectiveness ratio shows that the solution is not sensitive to
this value and not screening remains the optimal policy for
r values as large as $200,000. Similarly, a sensitivity analysis
on discount factor c is conducted. No changes occur when c
varies between 0.70 and 1. We then analyze the effect of the
accuracy of the screening test on the result and find that
even when the screening test is perfect, i.e. a ¼ b ¼ 1:0, not
screening remains the optimal policy.

In order to interpret the underlying dynamics that lead
to the robustness of the no screening solution, a closer look
at the transition probabilities reveals the following counter
intuitive observation. We note that the transition probabil-
ities from state 2 to 0 are higher than the transition proba-
bilities from state 1 to 0. In other words, individuals with
MCI and who do not receive treatment are more likely to
show cognitive improvement in a period than individuals
who have MCI and are under treatment. Likewise, the prob-
ability of transitioning from state 1 to 3 is higher than the
probability of transitioning from state 2 to 3. Therefore,
between the two MCI states, the one with treatment, state 1,
is the less desirable one in terms of disease progression. As
a screening action increases the probability of moving from
state 2 to 1 and decreases the probability of staying in state
2, a no-screening solution dominates in accordance with the
reward structure. The counter intuitive transitions in ADNI
data can possibly be attributed to some selection bias. It is
possible that, among all MCI individuals, the ones who
receive treatment are the ones who are believed to possess a
higher risk of AD progression than others who do not
receive treatment. This observation motivates us to conduct
a more in-depth analysis of the effect of transition probabil-
ities on the optimal solution of our model. In the following,
we present our analysis on three factors that can be charac-
terized as gender-specific response, disease progression and
treatment effectiveness.

3.5.2. Gender-specific transition probability matrices
As a good indication of the reaction of our model to
changes in transition probability matrices, we run our base-
line analysis with matrices estimated separately for males

and females using the same age cut-off value. The estimated
matrices for the no-screening action can be seen in Table 3.
The transition probability estimates for the screening case
were obtained as described in Section 3.1. When transition
probabilities are compared on a one-on-one basis, we
observe that gender-specific estimates do not deviate from
each other or from the original estimates in big magnitudes
in general. However, there are a few transitions where the
deviation may be relatively large, the maximum difference
being observed in the transition from state 4 to 2 as 0.35.
Still, our model finds a never-screen policy optimal for both
cases under the baseline assumptions.

3.5.3. Investigating the effect of disease progression
In order to analyze the effect of changes in transition prob-
ability estimates that correspond to disease progression, we
establish parameters for transitions into next disease stage.
In the model built according to the baseline description, let
l, h and � denote incremental probabilities of moving from
cognitively normal to MCI, from MCI to mild and from
mild to moderate and severe stages respectively. As we
decrease the probability of staying in a current stage, we
increase the probability of moving into the next stage using
the associated parameter. For instance, as the probability of
staying in the cognitively normal state decreases by l, the
probability of moving into MCI increases by l. This increase
is allocated to two MCI states in proportion to their original
probability estimates. For transitions from MCI to mild, as
we decrease the probability of staying in MCI without treat-
ment with h, we increase the probability of transitioning to
mild without treatment with the same quantity. � captures
transitions from mild without treatment to moderate and
severe in a similar way. We change one parameter at a time
in its valid range at increments of 0.01. For values of l
between 0 and 0.891, we always find a never screen optimal
policy. When we investigate values of h up to 0.671, we find
a never-screen policy optimal until h ¼ 0:28. From then on,
the optimal policy starts to include screenings at certain
periods. At h ¼ 0:29, the optimal policy is to screen at ages
60, 61 and 62. The number of screenings increases with h,
suggesting screening every year from 60 to 71 at h ¼ 0:36

Table 3. Estimated transition probabilities (at ¼ N)

PtðatÞ Gender¼ Female Gender¼Male

t<15 0:933 0:005 0:058 0:001 0:002 0:001 0
0:01 0:64 0:019 0:295 0:004 0:03 0:002
0:084 0:122 0:679 0:036 0:056 0:021 0:001
0 0:067 0:001 0:754 0:016 0:147 0:014
0 0:008 0 0:174 0:434 0:347 0:036
0 0:008 0 0:177 0:002 0:674 0:139
0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

0:894 0:004 0:091 0:002 0:002 0 0:007
0:022 0:679 0:021 0:231 0 0:038 0:009
0:085 0:061 0:78 0:035 0:027 0:005 0:007
0:001 0:076 0:001 0:673 0 0:224 0:025
0:023 0:038 0:349 0:313 0:209 0:062 0:007
0 0:006 0 0:109 0 0:718 0:166
0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

t � 15 0:908 0:007 0:071 0:001 0:003 0 0:01
0:001 0:615 0:023 0:291 0:004 0:063 0:003
0:087 0:127 0:67 0:034 0:059 0:014 0:008
0 0:053 0:003 0:627 0:013 0:284 0:02

0:009 0:017 0:138 0:081 0:529 0:21 0:015
0 0 0 0 0 0:882 0:118
0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

0:873 0:009 0:101 0:001 0:004 0 0:011
0:005 0:732 0:009 0:195 0:002 0:034 0:023
0:071 0:13 0:673 0:028 0:058 0:008 0:033
0 0:096 0:002 0:634 0:009 0:238 0:021

0:006 0:027 0:119 0:189 0:481 0:123 0:054
0 0 0 0 0 0:866 0:134
0 0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 19



and from 60 to 97 for values of h � 0:46. Finally, when
probability of staying in mild without treatment is decreased
by � as the probability of transitioning into moderate and
severe state increases, a never-screen policy remains optimal
for all possible values of � between 0 and 0.356. When all
parameters are changed simultaneously, we find that the
never-screen policy does not change for values less than
0.20. Therefore, we conclude that the no-screening policy is
not sensitive to reasonable changes in probability estimates
related to disease progression rates.

3.5.4. Investigating the effect of treatment effectiveness
We characterize the impact of treatment effectiveness
through certain transition probabilities in our baseline
model. A screening action results in an increased likelihood
of moving to state 1, the MCI with treatment state. We now
want to explore what happens if, when receiving treatment,
it is more likely for individuals to transition into state 0 or
less likely to transition into state 3 while in state 1. Let d
denote the incremental probability of moving from state 1
to state 0 instead of staying in state 1. Let k denote the
incremental probability of staying in state 1 instead of mov-
ing from state 1 to state 3. Note that d captures the capabil-
ity of the treatment applied in state 1 in terms of improving
cognitive ability and k corresponds to the capability of the
treatment applied in state 1 in terms of keeping cognitive
ability stable. Therefore, these parameters can be considered
as indicators of effectiveness of the treatment along two
dimensions that are not necessarily independent from each
other. The higher these values are, the more likely it is for the
patients to improve their cognitive ability or remain stable.

Based on our transition probability matrices, the bounds
on these parameters should be as follows:

0 � d � p11t atð Þ ¼ min 0:662; 0:7ð Þ ¼ 0:662
0 � k � p13t atð Þ ¼ min 0:22; 0:258ð Þ ¼ 0:22

We solve our model by changing d and k from initial val-
ues of 0 to their respective upper bounds at increments of
0.01. Figure 2 summarizes the resulting optimal policies
based on values of d and k.

Three main regions can be observed in Figure 2.
Recalling that the origin corresponds to current treatment
effectiveness levels, we observe that no screening remains as
the optimal policy around a significant neighborhood of

current values. If we assume that d and k increase at the
same level, a value of d ¼ k ¼ 0:15 would take the optimal
policy out of the no-screening zone. When d and k are
large, we observe optimal policies where screening is con-
ducted annually almost until the end of the horizon. Again,
if we assume that they change in the same way, a value of
d ¼ k ¼ 0:18 would result in an optimal policy where
screening is recommended every year between the ages 60
to 95. To exemplify what happens in the third zone in
between, we start tracing the path from 0.14 keeping d ¼ k.
At 0.14, the optimal policy is not to screen, at 0.15 to screen
every year between the ages 74 and 84, at 0.16 to screen
every year between the ages 74 and 94, at 0.17 to screen
every year between the ages 60 and 66 and 74 and 95, and
at 0.18 to screen every year between the ages 60 to 95. To
generalize the patterns we observe in this region, we can
state that for moderate to high values of k and low to mod-
erate values of d, the optimal policy is to screen every year
between the ages 74 and 97. For low to moderate values of
k and moderate to high values of d, the optimal policy is to
screen every year starting at age 74 until an age before 97 or
to screen every year for two distinct periods of time ½a; b�
and ½c; d� where 60 � a<b<c<d � 97.

The majority, but not all, of the policies we observe in
our experimentation are policies where the optimal action
changes only once in the horizon and remains the same
afterwards. These policies are easy to implement in the sense
that they can be expressed via simple rules that depend on
the age of individuals. There are some optimal policies
where the screening schedule covers a number of periods at
the beginning of the horizon, skips some periods and covers
a number of periods again. In addition to the d ¼ k ¼ 0:17
case described earlier, another example is with d ¼ 0:25 and
k ¼ 0:12, where the optimal policy is to screen yearly
between ages 62–66 and 74–96. We believe this type of pol-
icy is related to the two separate transition probability
matrices we use based on age.

3.5.5. A closer look at costs and QALYs associated with
optimal policies

So far, our focus has been on the nature of the optimal pol-
icy delivered by our model. We now want to have a closer
look at the cost and QALY components of the value func-
tion associated with the optimal policies we presented

Figure 2. Screening policies with respect to d and k. Never screen, Screen yearly until age d 2 ½94; 97�, Screen yearly between ½74; b� with b � 97 or
screen yearly between [a,b] and [c,d] with 60 � a<b<c<d � 97.
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earlier. Table 4 presents optimal QALY and cost values asso-
ciated with the cognitively normal state along with the value
of V0ð0Þ as a function of treatment levels experimented with
in Section 3.5.4. Values in bold correspond to screening
yearly until age d 2 ½94; 97� type of optimal policy. The val-
ues associated with the baseline model are V0ð0Þ ¼
1; 152; 937 where a decomposition into QALYs and costs
yields 15.72 for expected QALY and $419; 635 for expected
cost. Not surprisingly, QALYs increase and costs decrease as
d and k increase. We observe that expected costs may
decline by as much as approximately 6% and expected
QALYs may increase by as much as 20% as treatment effect-
iveness increases. In that regard, it appears that higher levels
of treatment effectiveness have a higher impact on optimal
expected QALYs than expected costs. Both changes are
observed to be monotone along both parameter dimensions.

Finally, to isolate gains resulting from a screening policy
at varying levels of treatment effectiveness, we compare val-
ues associated with our optimal policies with values associ-
ated with a never-screen policy. Table 5 contains
comparative information between optimal policies and a
never-screen policy at the associated levels of the parame-
ters. The reported figures are differences in expected
QALYs, costs and values associated with the cognitively nor-
mal state. As in Table 4, values in bold are associated with
screening yearly until age d 2 ½94; 97� type of optimal policy.
We note that, for treatment effectiveness levels where we
find screening every year optimal, the incremental expected
cost per expected QALY gain is quite low, leading to signifi-
cant improvements in optimal value.

4. Conclusion and future work

This is a first attempt to compute optimal population
screening policies for AD. Our model is a simple MDP
model that uses MMSE as a screening test, which is a widely
used tool in practice. We use data from the literature and
ADNI project to implement the model. The objective func-
tion is based on a combination of QALYs and costs. We
estimate transition probability matrices using age as a cova-
riate in a multistate Markov model. We find that a no-
screening policy is optimal in our baseline implementation.
When the sensitivity of the policy to various model parame-
ters is investigated, the policy appears to be quite robust to
changes in discount factor, cost-effectiveness ratio and
screening test accuracy. We also analyze sensitivity of our
results to changes in the transition probability estimates.
Our baseline finding of optimality of a never-screen policy
does not change when gender-specific transition probability
estimates are used. In addition, we study sensitivity to
changes in transitions related to disease progression and
drug effectiveness in more detail. Overall, we observe that
the baseline result that finds a never-screen policy optimal
does not change when small changes take place in the tran-
sition probability estimates.

Through a parametric analysis, we observe that the opti-
mal policy may be very sensitive to treatment effectiveness.
When treatment plans that lead to higher cognitive abilityTa
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improvement or stabilization become available, implement-
ing a population screening policy may become socially opti-
mal. This places our study more towards the studies of
Dixon et al. (2014), who examined a hypothetical screening
program for individuals over 75 in England and Wales by
means of a static decision model, and Yu et al. (2015), who
studied an opportunistic screening program in Korea using
simulation. Although our study is not directly comparable
to these studies because of the different assumptions dictated
by different modeling environments and choices, we provide
additional support to demonstrate the impact of treatment
effectiveness on outcomes.

As we see treatment effectiveness as the most dynamic
factor among the ones we study, we suggest that transition
probability estimation should be conducted carefully when
better treatment effectiveness levels are observed due to
emerging options. Our parametric analysis on treatment
effectiveness with gender-specific transition probability
matrices suggests that it may be worthwhile to consider gen-
der-specific policies if and when higher treatment effective-
ness levels are reached. We also note that a careful
reassessment of other model parameters, such as costs and
rewards, should be taken into account using the characteris-
tics of the population in focus, as these may show significant
variations in different settings and across time.

An analysis of the optimal values of the value function
associated with the cognitively normal state reveals the mag-
nitude of possible gains at varying levels of treatment effect-
iveness. A decomposition of the optimal value function with
respect to expected QALYs and costs through the horizon
reveals that QALY improvements may be more significant
than cost improvements. A comparison of the optimal
screening policy to a no-screening policy at experimented
levels of treatments effectiveness demonstrates benefits of
screening. We suggest that policymakers should assess the
effectiveness of emerging treatment alternatives periodically
and consider revising their population screening decisions.

Findings in medical literature indicate that AD seems
irreversible when cognitive decline becomes detectable via
tools like MMSE. Therefore, treatments that are highly

effective at cognitively evident stages of AD may not be
highly probable. The focus in the medical literature has thus
shifted to diagnosing AD at a pre-clinical stage. In 2011, the
criteria and guidelines for diagnosis of AD were revised and
updated by the National Institute on Aging (NIA) and the
Alzheimer’s Association (AA). The most important differen-
ces in criteria were the introduction of the preclinical aspect
of the disease. The NIA and AA propose criteria for the pre-
clinical stages of AD and introduce the biomarker tests for
Ab and MAP-s as possible clue providers for the onset of
AD (Albert et al., 2011; Dubois et al., 2007; Sperling et al.,
2011). Research is ongoing on treatment plans that target
Ab elimination whose accumulation is thought to result in
the neurodegeneration that leads to AD. A natural extension
of our study would therefore be to build a model that sug-
gests screening using biomarkers with the assumption that
positive individuals are treated at a pre-clinical stage. There
are several challenges associated with such a model. First of
all, there is little information on how individuals progress
from pre-clinical to MCI and finally to AD (Hampel et al.,
2008; Henriksen et al., 2014). Magnetic resonance imaging
scans and positron emission tomography scans are costly
means of biomarker detection. The alternative method of
cerebrospinal fluid collection causes discomfort and comes
with some risks. There are no universal guidelines for cut-
off levels to be applied to biomarker specimens for AD diag-
nosis. Large-scale data for treatment effectiveness and cost
of treatment are not available on experimental therapies.
Still, a partially observable MDP may be better suited to
build such a model where a cognitively normal state is
replaced with a collection of partially observable pre-clinical
states, including a disease-free state. The results of the bio-
marker tests can be modeled to reveal partial information
that leads to belief updates with respect to states of the
model. The initial belief regarding an individual’s being in
one of the pre-clinical states of AD may incorporate their
characteristics and risk factors, thus making personalized
screening policy recommendations possible. As more data is
collected in ongoing studies, a realistic implementation of
such a model would become more plausible.

Table 5. Differences in expected QALYs, costs ($) and value functions ($) for the cognitively normal state: optimal policy versus never-screen policy.

d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.66

0.22 0 0.01 0.1 0.24 0.35 0.43 0.51 0.57 0.62 0.66 0.7 0.73 0.76 0.78 0.79
0 3,942 13,277 11,198 9,425 7,926 6,635 5,520 4,547 3,692 2,935 2,260 1,655 1,109 1,006
0 1,817 14,249 34,065 49,663 62,239 72,591 81,254 88607 94,927 100,414 105,224 109,474 113,256 113963

0.2 0 0 0.03 0.13 0.24 0.34 0.42 0.47 0.53 0.58 0.62 0.65 0.69 0.72 0.72
0 0 4376 11,739 10,129 8,727 7,499 6,421 5,467 4,620 3,862 3,181 2,565 2,006 1,901
0 0 5,011 19,118 35,272 48,476 59,466 68,748 76,690 83,560 89,561 94,847 99,539 103,731 104,517

k0.15 0 0 0 0.01 0.03 0.12 0.21 0.28 0.34 0.4 0.45 0.49 0.53 0.56 0.57
0 0 0 4,757 4,612 9,688 8,695 7,786 6,954 6,191 5,491 4,847 4,254 3,707 3,602
0 0 0 1,110 6,954 19,995 31,854 42,076 50,972 58,783 65,694 71,852 77,373 82,350 83,287

0.1 0 0 0 0 0 0.02 0.05 0.12 0.19 0.25 0.3 0.35 0.39 0.43 0.44
0 0 0 0 0 4,999 7,850 8,333 7,661 7,025 6,424 5,859 5,327 4,827 4,730
0 0 0 0 0 3,551 10,215 20,547 29,900 38,216 45,655 52,349 58,403 63,904 64,944

0.05 0 0 0 0 0 0 0.01 0.03 0.06 0.13 0.18 0.23 0.27 0.32 0.33
0 0 0 0 0 0 5,233 4,949 7,129 7,396 6,906 6,433 5,977 5,540 5,455
0 0 0 0 0 0 1,176 5,070 12,515 20,918 28,634 35,636 42,018 47,857 48,966

0 0 0 0 0 0 0 0 0 0.02 0.02 0.07 0.12 0.17 0.21 0.22
0 0 0 0 0 0 0 76 5,137 6,048 6,714 6,712 6,336 5,968 5,896
0 0 0 0 0 0 0 7 2,901 6,735 14,106 21,182 27,747 33,792 34,944
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Appendix. The multistate model
A multi-state model (MSM) is a model for a stochastic process

allowing individuals to move among a finite number of states. States
can be either transient or absorbing, if no transitions can occur
from that state. In the disease progression framework, multistate
Markov models based on the Markovian assumption in discrete and
continuous time are generally used. Typically, in this framework,
the stages of the disease form a homogeneous continuous time
Markov process and the individuals may go forward to or backward
from adjacent states or transit to an absorbing state (usually death,
but not necessarily). MSM can be adopted in a more general setting
where transitions from any state to another can happen. The state
of the condition of a particular individual k, recorded at arbitrary
times t, is denoted as skðtÞ. Here, the states of the disease are mod-
eled as a homogeneous continuous time Markov process and qij rep-
resents the transition rate from state i to state j. The corresponding
transition intensity matrix denoted by Q where state n is an absorb-
ing state is:

Q ¼ qij ¼

q11 q12 	 	 	 q1n

q21 q22 	 	 	 q2n

..

. ..
. . .

. ..
.

qn�1;1 qn�1;2 	 	 	 qn�1;n

0 0 	 	 	 0

0
BBBBBB@

1
CCCCCCA

When no instant transitions are allowed as in an irreversible disease
progression framework, then respective qij values might be set equal to
zero. The rows of transition intensity matrix must add up to 0, hence
for the diagonal entries we have:

qii ¼ �
X
i 6¼j

qij;8i ¼ 1; :::; n

Maximum likelihood estimates for MSM models can be computed
via the transition probability matrix Pt at time t that has the following
entries for any individual

pijt ¼ Pr s uð Þ ¼ jjs tð Þ ¼ i
� �

(2)

where u � t. Assuming sð0Þ ¼ i, the forward equations can be written
for Dt>0 as:

piktþDtð Þ ¼ pikt 1þ qkkDt
� �

þ
X
j 6¼k

pijt q
jkDt þ o Dtð Þ

where oðDtÞ ! 0 as Dt ! 0. From here and a similar backward equa-
tion, Kolmogorov differential equations are derived (Jackson
et al.,2003). The solution of these equations with initial condition P0 ¼
I is

Pt ¼ eQt (3)

These models have been used in the medical literature for different
types of diseases such as cancer, diabetes, HIV (Andersen, 1988;
Jackson et al., 2003; Satten and Longini Jr., 1996).

The likelihood associated with a transition rate matrix Q is given
by the product of probabilities of transition between observed states,
over all individuals k and observation times j and a maximum likeli-
hood estimate of Q is obtained by optimization.
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The estimation process may incorporate covariates. There are various
ways of relating covariates to dependent variables. Traditionally, general-
ized regressions are used with proportional hazard model to relate transi-
tion intensities qijt at time t to covariates zðtÞ at that time via

qijt;z tð Þð Þ ¼ qijeb
T
ij z tð Þ

The likelihood function is updated with respect to this Q and the
optimization is solved to find estimates of b as well. This may be a
difficult optimization problem to solve numerically depending on

problem size and characteristics. One algorithm employed is the
expectation-maximization (EM) algorithm. This algorithm alternates
between two steps: the first one computes the expectation of the like-
lihood function given parameters; the second one updates the values
of the parameters in an effort to improve the likelihood function.
The two steps are repeated until convergence to a local maximum of
L. The adaptation of the EM algorithm for different settings of mod-
els is described in MacDonald and Zucchini (1997) and Satten and
Longini Jr. (1996).
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